Distributiv lov

(Omdirigert fra Den distributive lov)

En distributiv lov er i matematikk et teorem eller et aksiom som sier at en gitt binær operasjon A i en mengde M er distributiv med hensyn på en annen binær operasjon B. Dette er tilfelle dersom de to operasjonene oppfyller relasjonen

for all u, v og w i mengden M.[1]

I mengden av reelle tall er multiplikasjon distributiv med hensyn på addisjon:

En distributive lov gir en relasjon mellom to operasjonene når de opptrer sammen i et matematisk uttrykk. Relasjonen blir ofte postulert i aksiomer som definerer operasjonene. Dette gjelder for eksempel for kroppsaksiomene for addisjon og multiplikasjon av reelle tall.[2]

En algebraisk struktur er distributiv dersom den har to binære operasjoner som oppfyller en distributiv lov.

Formell definisjonRediger

Gitt en mengde S og to binære operasjoner   og  .

Operasjonen   er venstresidig distributiv med hensyn på   dersom

 

Operasjonen   er høyresidig distributiv med hensyn på   dersom

 

Operasjonen   er distributiv med hensyn på   dersom den er både venstresidig og høyresidig distributiv. Egenskapen kan også uttrykkes som at   distribuerer over  .

EksemplerRediger

  • I mengden av reelle og komplekse tall er multiplikasjon distributiv med hensyn addisjon og subtraksjon. Det motsatte er ikke tilfelle.
  • I mengden av reelle tall er maksimumsoperasjonen distributiv over minimumsoperasjonen - og også omvendt:
 
 
  • I mengden av reelle tall er addisjon distributiv over både maksimum- og minimumsoperasjonen:
 
 
 
 

Distributivitet i matematiske strukturerRediger

  • I en kropp er både multiplikasjonen distributiv med hensyn på addisjonen. Det samme gjelder for en ring.
  • I en algebra er produktet distributivt med hensyn på vektoraddisjonen.
  • I et vektorrom er skalarmultiplikasjon distributiv med hensyn på vektoraddisjon.

Se ogsåRediger

ReferanserRediger

LitteraturRediger

  • E.J.Borowski, J.M.Borwein (1989). Dictionary of mathematics. Glasgow: Collins. ISBN 0-00-434347-6. 
  • Walter Rudin (1976). Principles of mathematical analysis. Singapore: McGraw-Hill International Book Co. ISBN 0-07-085613-3.