Dynamisk trykk
I fluiddynamikken er dynamisk trykk (ofte benevnt med q eller Q), en størrelse som oppstår på grunn av en strøm av et fluid (væske eller gass). Dette i motsetning til statisk trykk som er knyttet til fluidets masse i et tyngdefelt. Det dynamiske trykket øker kvadratisk med fluidstrømmens hastighet, matematisk uttrykt slik:[1]
- eller
der:
Fysisk bakgrunn
redigerDet dynamiske trykket er kinetisk energi per volumenhet av fluidpartiklene. Dynamisk trykk er en av størrelsene i Bernoullis ligning, som er avledet fra loven kjent som energiprinsippet (bevaring av energi) for et fluid i bevegelse. I noen forenklete tilfeller er dette lik differansen mellom totaltrykket og det statiske trykket.[1]
Et annet viktig aspekt ved dynamisk trykk er at dimensjonsanalyse viser at den aerodynamiske belastningen (dvs. spenning på en struktur utsatt for aerodynamiske krefter) som oppleves på et fly i fart v er proporsjonal med lufttetthet og kvadratet av v, det vil si proporsjonal med q. Derfor kan en ved å se på variasjonen av q under et flys bevegelse bestemme hvordan spenninger vil variere. Særlig er dette interessant for å undersøke når den vil nå sin maksimal verdi. Punktet for maksimal aerodynamisk belastning er ofte referert til som max Q. Dette er en kritisk parameter i mange anvendelser, for eksempel i forbindelse med kreftene som virker under oppstigningen av et romfartøy.
Bruk
redigerDet dynamiske trykk, sammen med statisk trykk og trykket på grunn av høyde (trykkhøyde), bruktes i bernoulli-prinsippet som en energibalanse som er alltid er tilstede i et lukket system. De tre størrelsene brukes for å definere tilstanden i et lukket system av en inkompressibel væske med jevn tetthet.
Hvis en deler det dynamiske trykk på produktet av fluidets tetthet og tyngdens akselerasjon g blir resultatet noe som kalles hastighetstrykk. Dette anvendes i trykklikninger som den som ble brukt for trykkhøyde og fallhøyde. I et venturimeter kan differensialtrykket brukes til å beregne differensial hastighetstrykket, som er vist i bildet til høyre. Et alternativ uttrykk for hastighetstrykk er dynamisk høyde.
Kompressibel strømning
redigerMange tekster definere dynamisk trykk bare for inkompressibel strømmer. (For komprimerstrømmer brukes begrepet påvirkningtingstrykk i disse tekstene.) Noen britiske tekster utvider definisjon av dynamisk trykk til også å inkludere komprimerstrømmer.[2][3]
Hvis væsken i problemet for hånden kan betraktes som en ideell gass (som vanligvis er tilfelle for luft), kan det dynamiske trykket uttrykkes som en funksjon av fluidtrykk og Mach tall.
Ved å anvende idealgassloven:[4]
i tillegg til definisjonen av lydens hastighet a og av Mach tall M:[5]
- and
dessuten definisjonen , kan dynamisk trykk omskrives som:[6]
der enhetene står for:
- = statisk trykk i Pascal,
- = molar tetthet av den ideelle gassen i mol/m3,
- = massen av et mol av den ideelle gassen i kg/mol,
- = tettheten av den ideelle gassen kg/m3,
- = gasskonstanten 8,3144 J/(mol·K),
- = temperaturen referert til det absolutte nullpunktet i Kelvin (K),
- = Mach tall (dimensjonsløs),
- = spesifikk varmekapasitet (dimensjonsløs) (1,4 for luft ved hav nivå),
- = fluidhastighet m/s,
- = lydhastighet i m/s,
Se også
redigerLitteratur
rediger- Clancy, L.J. (1975), Aerodynamics, Pitman Publishing Limited, London. ISBN 0-273-01120-0
- Houghton, E.L. and Carpenter, P.W. (1993), Aerodynamics for Engineering Students, Butterworth and Heinemann, Oxford UK. ISBN 0-340-54847-9
- Liepmann, Hans Wolfgang; Roshko, Anatol (1993), Elements of Gas Dynamics, Courier Dover Publications,
Referanser
rediger- ^ a b Clancy, L.J., Aerodynamics, Section 3.5
- ^ Clancy, L.J., Aerodynamics, Section 3.12 and 3.13
- ^ "the dynamic pressure is equal to half rho vee squared only in incompressible flow."
Houghton, E.L. and Carpenter, P.W. (1993), Aerodynamics for Engineering Students, Section 2.3.1 - ^ Clancy, L.J., Aerodynamikk, § 10.4
- ^ Clancy, L.J., Aerodynamics, Section 10.2
- ^ Liepmann & Roshko, Elements of Gas Dynamics, p. 55.
Eksterne lenker
rediger- Definisjon av dynamisk trykk på Eric Weisstein World of Science