Opprinnelig fil(SVG-fil, standardstørrelse 312 × 324 piksler, filstørrelse: 76 KB)


Wikimedia Commons' logo

Beskrivelse

Beskrivelse
English: Universal coldness/temperature scale in SI units, where coldness[1][2][3][4][5][6] is one possible name for reciprocal-temperature[7] in non-thermal units[8] i.e. β ≡ 1/kT ≡ 1/k dS/dE. This energy uncertainty-slope dS/dE approaches a common value for systems that randomly (or thermally) share energy E, since heat energy naturally flows from low (even negative) to high coldness (toward more "choice of open-slots" or "ways to play", and therefore clockwise) until sharing systems reach a common (equilibrium) value of this slope. Bottom line: 1 Kelvin of ambient temperature requires one to thermalize about 76.5594 picoJoules of ordered energy for every teraByte of subsystem correlation-information created, and 1 nanoJoule/Kelvin of information takes up about 13.0618 teraBytes of memory.
Dato
Kilde Eget verk
Opphavsperson AkanoToE
Andre versjoner

Own work based on: ColdnessScale.png. Description and Added Notes come from the original file's page.

SVG utvikling
InfoField
 
SVG-koden er gyldig.
 
Denne vektorgrafikken ble laget med Matplotlib.
 
This diagram uses translateable embedded text.
 
Denne vektorgrafikken ble laget med Matplotlib.
 
Denne vektorgrafikken ble laget med Inkscape .

Added notes

The radial lines denote key temperatures, clockwise from bottom including He evaporation (dotted cyan) around 4 K ↔ 3265 GB/nJ (just CCW from the 4732.51 GB/nJ of the 2.76 K cosmic background) and N2 evaporation (dashed cyan) around 77 K ↔ 170 GB/nJ, CO2 sublimation around −78.5 °C ↔ 67.1 GB/nJ (dot-dashed cyan), H2O liquification around 0 °C ↔ 47.8 GB/nJ and evaporation around 100 °C ↔ 35.0 GB/nJ (dot-dashed green), "red-hot" (solid red) around 500 °C ↔ 16.9 GB/nJ, rock melting around 1500 °C ↔ 7.37 GB/nJ (solid magenta), graphite sublimation (dashed magenta) around 3642 °C ↔ 3.34 GB/nJ, and the surface of the sun (dotted magenta) around 5778 K ↔ 2.26 GB/nJ ≈ 2.01 nat/eV. The dashed red lines represent the min-max European temperature range (from 0 °F ↔ 51.2 GB/nJ to 100 °F ↔ 42.0 GB/nJ) on which Fahrenheit based his scale, at top of which is also the human basal temperature at around 98.6 °F ↔ 42.1 GB/nJ. Room temperature (3 o'clock) is defined as either 20 °C = 68 °F ↔ 44.6 GB/nJ ≈ 39.6 nat/eV = 1/kT or 22 °C = 71.6 °F ↔ 44.3 GB/nJ ≈ 39.3 nat/eV = 1/kT, and therefore kTroom is about 1/40 of an electron Volt.

Inverted-population states for finite-energy systems are found on the left half of this plot. These include: (i) 1024 end-on dominoes acting like stonehenge in the earth's gravitational-field (grey-dotted) at −.001[J]/(kBln[1024]) ≈ −1.04×1019 K ↔ −1.25×10−15 GB/nJ, (ii) a mole of excited Ne atoms in a He-Ne LASER ready for stimulated-emission (grey-dashed) at −1.96 [eV]/(kBln[6×1023]) ≈ −415 K ↔ −31.5 GB/nJ, and (iii) the orientation-temperature for 500,001 up out of 1,000,000 proton-spins in a 1 Tesla field (grey) at 1.41×10−26 J/(kB(ψ[1 + 1000000 − 500001] − ψ[1 + 500001])) ≈ −1.41×10−26 J/(kBln[1000000/500001 − 1]) ≈ −255 K ↔ −51.1 GB/nJ where ψ[x] is the PolyGamma function. The dot-dashed grey lines are for 500,002 and 500,003 out of 1,000,000 protons oriented spin-up in that same 1 [Tesla] field.

This plot illustrates that you can use either temperature T or reciprocal-temperature 1/kT to predict the direction of heat-flow. When you use temperature, remember that the highest possible temperature T is minus-zero-Kelvin and the lowest possible T is plus-zero-Kelvin. With coldness 1/kT, the lowest value is minus-infinity and the highest is plus-infinity so that heat energy naturally and simply flows from numerically low to numerically high 1/kT.

Table of conversions between some temperature & reciprocal-temperature units
unit to →
↓ from ↓
TF
in °F
TC
in °C
T
in K
ε ≡ kT
in eV/nat
β0 ≡ 1/kT
in GiB/nJ
β1 ≡ 1/kT
in GB/nJ
β2 ≡ 1/kT
in ZB/Cal
TF 1 5/9(TF − 32) 5/9(TF − 32) + 273.15
TC 9/5TC + 32 1 TC + 273.15
T 9/5(T − 273.15) + 32 T − 273.15 1 8.61733×10−5T 12165/T 13062/T 54650/T
ε 11604.5ε 1 1.0483/ε 1.1256/ε 4.7049/ε
β0 12165/β0 1.0483/β0 1 1.0737β0
β1 13062/β1 1.1256/β1 β1/1.0737 1 4.184β1
β2 54650/β2 4.7049/β2 β2/4.184 1

In the table of conversions above, note that the uncertainty-slope or coldness β≡1/kT in [GiB/nJ] or [GB/nJ] is nearly equal to the reciprocal of kT in [eV/nat]. Even more curiously, if we don't mind using binary-multiples i.e. gibiBytes instead of powers of ten, we can say that 1 [nat/eV] = 1.04827 [GiB/nJ] = 1.12557 [GB/nJ]. Hence room temperature coldness is about 40 [GiB/nJ] simply because kT at room temperature is about 1/40 [eV].

Python source code

The following code generated the plot above. The legend and arrowhead were added later in Inkscape.

import numpy as np
import matplotlib.pyplot as plt

kb_inv = 1/1.380649e-23/np.log(2)/8/1e18 # in GB per nJ
TAU = np.math.tau
gib_per_nj = np.array([-140, -120, *np.arange(-100, 110, 10), 120, 140])

scale = 44.3 # Defines the 3 o'clock position
angles = 2 * np.arctan(gib_per_nj/scale)
r = np.ones(len(gib_per_nj))

kelvins = np.arange(-900, 1000, 100)
k_angles = 2 * np.arctan(kb_inv/kelvins/scale)
r_k = np.ones(len(kelvins))

celsius = np.arange(-200, 600, 100)
c_angles = 2 * np.arctan(kb_inv/(273.15 + celsius)/scale)
r_c = np.ones(len(c_angles))

fahrenheit = np.arange(-400, 600, 100)
f_angles = 2 * np.arctan(kb_inv/(273.15 + 5*(fahrenheit-32)/9)/scale)
r_f = np.ones(len(f_angles))

angle_cut = TAU/36
circle_angles = np.linspace(-(TAU/2 - angle_cut), TAU/2, 2**12)
r_circ = np.ones(len(circle_angles))
semi_angles = np.linspace(0, TAU/2, 2**12)
r_semi = np.ones(len(semi_angles))

size = 'x-small'
def get_text(angles, labels, distance, color):
    for i, label in enumerate(labels):
        rot_angle = angles[i] * 360 / TAU
        plt.text(angles[i], distance + 0.1, label, color=color, ha='center', va='center', rotation=90-rot_angle, fontsize=size)

fig = plt.figure(dpi=150)
ax = fig.add_subplot(projection='polar')
gb_distance = 1
k_distance = .8
c_distance = .6
f_distance = .4

get_text(angles, gib_per_nj, gb_distance, 'k')
get_text(k_angles, kelvins, k_distance, 'b')
get_text(c_angles, celsius, c_distance, 'g')
get_text(f_angles, fahrenheit, f_distance, 'r')
# for i, label in enumerate(gib_per_nj):
#     rot_angle = angles[i] * 360 / TAU
#     plt.text(angles[i], r[i]+.15, label, ha='center', va='center', rotation=90-rot_angle)
    # plt.annotate(label, (angles[i], r[i]))

# Plot lines
def plot_line(angle, color, line_type):
    ax.plot([angle, angle], [0,1], color=color, linestyle=line_type, lw=1)
# Helium boiling point
plot_line(2 * np.arctan(kb_inv/4./scale), 'c', ':')
# N2 boiling point
plot_line(2 * np.arctan(kb_inv/77./scale), 'c', '--')
# CO2 sublimation
plot_line(2 * np.arctan(kb_inv/(273.15-78.5)/scale), 'c', '-.')
# H20 freezing
freezing_angle = 2 * np.arctan(kb_inv/(273.15)/scale)
plot_line(freezing_angle, 'g', '-.')
# H20 boiling
boiling_angle = 2 * np.arctan(kb_inv/(373.15)/scale)
plot_line(boiling_angle, 'g', '-.')
# Liquid water range
ax.bar((boiling_angle+freezing_angle)/2, c_distance, boiling_angle-freezing_angle, color='g', alpha=0.25)
# Red hot
plot_line(2 * np.arctan(kb_inv/(273.15 + 500)/scale), 'r', '-')
# Rock melting
plot_line(2 * np.arctan(kb_inv/(273.15 + 1500)/scale), 'm', '-')
# Graphite sublimation
plot_line(2 * np.arctan(kb_inv/(273.15 + 3642)/scale), 'm', '--')
# Surface of the Sun
plot_line(2 * np.arctan(kb_inv/5778/scale), 'm', ':')
# 0 °F
plot_line(2 * np.arctan(kb_inv/(273.15+5*(0-32)/9)/scale), 'r', '--')
# 100 °F
plot_line(2 * np.arctan(kb_inv/(273.15+5*(100-32)/9)/scale), 'r', '--')
# 1024 Stonehenge dominoes
plot_line(2 * np.arctan(-1.25e-15/scale), 'darkgrey', ':')
# HeNe laser
plot_line(2 * np.arctan(-31.5/scale), 'darkgrey', '--')
# 500,001 spin-up protons out of 1 million in 1T magnetic field
mu_p = 1.410606797e-26 # proton magnetic moment
plot_line(2 * np.arctan(kb_inv/(mu_p/(1.38e-23*np.log(1000000/500001-1)))/scale), 'darkgrey', '-')
# 500,002 spin-up protons out of 1 million in 1T magnetic field
plot_line(2 * np.arctan(kb_inv/(mu_p/(1.38e-23*np.log(1000000/500002-1)))/scale), 'darkgrey', '-.')
# 500,003 spin-up protons out of 1 million in 1T magnetic field
plot_line(2 * np.arctan(kb_inv/(mu_p/(1.38e-23*np.log(1000000/500003-1)))/scale), 'darkgrey', '-.')

# Plot circles
ax.plot(circle_angles, gb_distance*r_circ, 'k-')
ax.plot(circle_angles, k_distance*r_circ, 'b-')
ax.plot(semi_angles, c_distance * r_semi, 'g-')
ax.plot(semi_angles, f_distance * r_semi, 'r-')

# Plot infinities
ax.plot([TAU/2], [gb_distance], 'k.')
plt.text(TAU/2, 0.075 + gb_distance, r'$+\infty$', ha='center', va='center', rotation = -90, fontsize=size)
ax.plot(0., k_distance, 'b.')
plt.text(0., 0.075 + k_distance, r'$\pm\infty$', color='b', ha='center', va='center', rotation = 90, fontsize=size)
# plt.annotate('$+\infty$', (TAU/2, 1.))
# plt.grid(visible=None)
plt.axis('off')

# Plot points
ax.plot(angles, gb_distance*r, 'k.')
ax.plot(k_angles, k_distance*r_k, 'b.')
ax.plot(c_angles, c_distance * r_c, 'g.')
ax.plot(f_angles, f_distance * r_f, 'r.')

# Orient plot
ax.set_theta_zero_location('N')
ax.set_theta_direction(-1)

# Set linewidths
plt.setp(ax.lines, linewidth=0.6)
plt.title('Universal coldness/temperature scale')
plt.savefig('fig/ColdnessScale-mpl.svg');

Footnotes

  1. Claude Garrod (1995) Statistical Mechanics and Thermodynamics (Oxford U. Press).
  2. J. Meixner (1975) "Coldness and Temperature", Archive for Rational Mechanics and Analysis 57:3, 281-290 abstract.
  3. Ingo Mueller (1972) Entropy, Absolute Temperature and Coldness in Thermodynamics: Boundary conditions in porous materials (Springer-Verlag, Wein GMBH) preview
  4. Ingo Müller (1971) "The coldness, a universal function in thermoelastic bodies", Archive for Rational Mechanics and Analysis 41:5, 319-332 abstract.
  5. Müller, I. (1971) "Die Kältefunktion, eine universelle Funktion in der Thermodynamik wärmeleitender Flüssigkeiten.", Arch. Rational Mech. Anal. 40, 1–36.
  6. Day, W.A. and Gurtin, Morton E. (1969) "On the symmetry of the conductivity tensor and other restrictions in the nonlinear theory of heat conduction", Archive for Rational Mechanics and Analysis 33:1, 26-32 (Springer-Verlag) abstract.
  7. J. Castle, W. Emmenish, R. Henkes, R. Miller, and J. Rayne (1965) Science by Degrees: Temperature from Zero to Zero (Westinghouse Search Book Series, Walker and Company, New York).
  8. P. Fraundorf (2003) "Heat capacity in bits", Amer. J. Phys. 71:11, 1142-1151.

Lisensiering

Jeg, rettighetsinnehaver av dette arbeidet, publiserer det herved under følgende lisens:
w:no:Creative Commons
navngivelse del på samme vilkår
Denne filen er lisensiert under lisensen Creative Commons Navngivelse-DelPåSammeVilkår 4.0 Internasjonal.
Du står fritt:
  • til å dele – til å kopiere, distribuere og overføre verket
  • til å blande – til å endre verket
Under de følgende betingelsene:
  • navngivelse – Du må kreditere verket på passende vis, lenke til lisensen og indikere hvorvidt det har blitt gjort endringer. Du kan gjøre det på enhver rimelig måte, men ikke på en måte som antyder at lisensgiveren støtter deg eller din bruk av verket.
  • del på samme vilkår – Dersom du remikser, omarbeider eller på annen måte bygger på dette verket, må du kun distribuere resultatet under den samme eller en samsvarende lisens som denne.

Bildetekster

Legg til en kort forklaring på hva filen representerer

Elementer som er med i denne fila

motiv

image/svg+xml

b9abf5e0eaac42f5e760d3f25fe525c589d13356

77 410 byte

324 piksel

312 piksel

Filhistorikk

Klikk på et tidspunkt for å vise filen slik den var på det tidspunktet.

Dato/klokkeslettMiniatyrbildeDimensjonerBrukerKommentar
nåværende9. jul. 2022 kl. 02:43Miniatyrbilde av versjonen fra 9. jul. 2022 kl. 02:43312 × 324 (76 KB)AkanoToEArrowheads didn't render, fixed
9. jul. 2022 kl. 02:37Miniatyrbilde av versjonen fra 9. jul. 2022 kl. 02:37312 × 324 (76 KB)AkanoToEAdded arrowheads, adjusted legend size
9. jul. 2022 kl. 02:29Miniatyrbilde av versjonen fra 9. jul. 2022 kl. 02:29326 × 324 (75 KB)AkanoToEUploaded own work with UploadWizard

Den følgende siden bruker denne filen:

Global filbruk

Følgende andre wikier bruker denne filen:

Metadata